

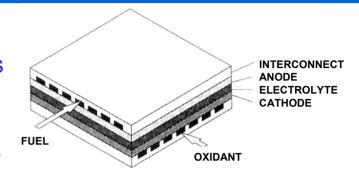
Surface-Modified Ferritic Interconnect Materials for Solid Oxide Fuel Cells

B. Lanning, J. Arps, and R. Wei Southwest Research Institute

Sponsor: DOE Project # DE-FC26-02NT41579

TPOC: Dr. Lane Wilson

SECA Core Technology Workshop


February 19-20, 2003

Technical Issues Addressed

Background/Need

 As the trend in planar SOFC development is driven to lower temperatures (i.e., <800° C), oxidation resistance metal alloys become feasible as candidate interconnect materials

- In comparison to ceramic materials, high-temperature metal alloys would:
 - Reduce stack costs (cheaper materials, formability)
 - Enhance mechanical integrity/fracture toughness of stack
- Ferritic stainless steels (~ 20% Cr) represent a class of metal alloys that form conductive oxide scales with thermal expansion characteristics that are well matched to their ceramic counterparts

Issues

Traditional ferritic stainless steels (i.e., 430, E-brite) form chromium oxide scales that:

- 1. Continue to grow at high temperatures ⇒ spallation, and
- 2. Do not prevent interdiffusion of cations (i.e., Cr out and Co in)

Ultimately leading to degraded fuel cell performance

R&D Objectives/Challenges

- Engineer surface oxide scale on a ferritic stainless steel that is:
 - Stable (i.e., mechanically and chemically) at 800° C in oxidizing/reducing environments, and
 - Electrically conductive (minimize stack IR losses)
- Develop/implement processes that are inherently scaleable for manufacturing
- Demonstrate stability/electrical conductivity of interconnect for extended time (> 1000 hours) at 800° C in contact with cathode materials ((La_{0.8}Sr_{0.2})FeO₃ and (La_{0.6}Sr_{0.4})(Fe_{0.8}Co_{0.2})O₃)

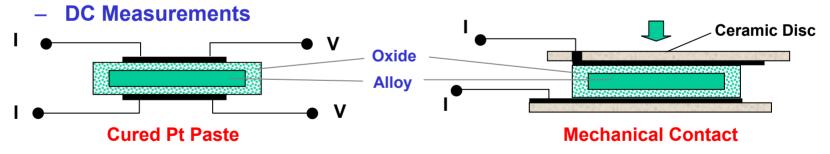
Technical Approach

Formation of Stable Oxide

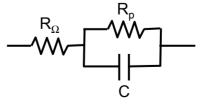
- Basis: Additions of Al and Y in a FeCrAlY alloy have been shown to stabilize oxide (Nuclear Industry (UK) and bond coat for TBC in turbine blades)
 - 4-5% aluminum; formation of stable scale,
 - ~1% yttrium improves resistance to spallation;
 (promotes thinner oxide, reduces cation diffusion along g.b.)
- Approach: Development of stable thermal oxide (> 850° C) on FeCrAlY alloy
- Issue: Poor electrical conductivity

Implantation of electronic carriers

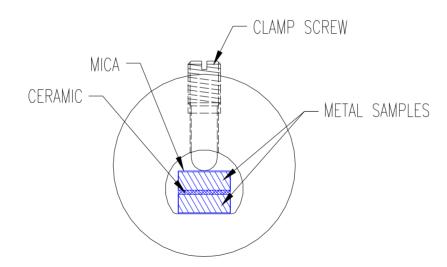
- Basis*: Lead implanted polycrystalline alumina, niobium implanted α-alumina, and iron implanted MgO crystals have all shown to increase electrical conductivities (*See for example: Romana et al, "Phase Formation Study in α-Al₂O₃ Implanted with Niobium Ions", Nuc. Instr. & Meth. In Phys. Res., B46 (1990), p. 94)
- **Approach:** Implant ions (i.e., Nb, Ti, and Y) at dosages of a few a/o at a depth of 100 150 nm to increase electrical conductivity
- Issue: Matching penetration depth (concentration) to formation of stable oxide


Experimental Approach

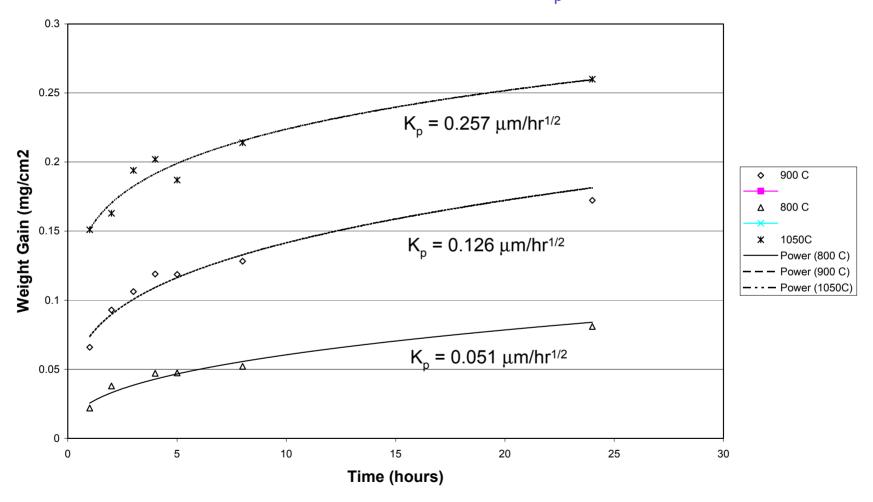
 Ion Implantation depth, d, is held constant while varying the thickness of the thermally grown oxide (>850° C)


Ion Type	<u>o</u>	Oxide Thickness		
		d <u>*</u>	<u>2d*</u>	<u>4d*</u>
Nb+	X	X	X	X
Ti+	X	X	X	X
Y+	X	X	X	X

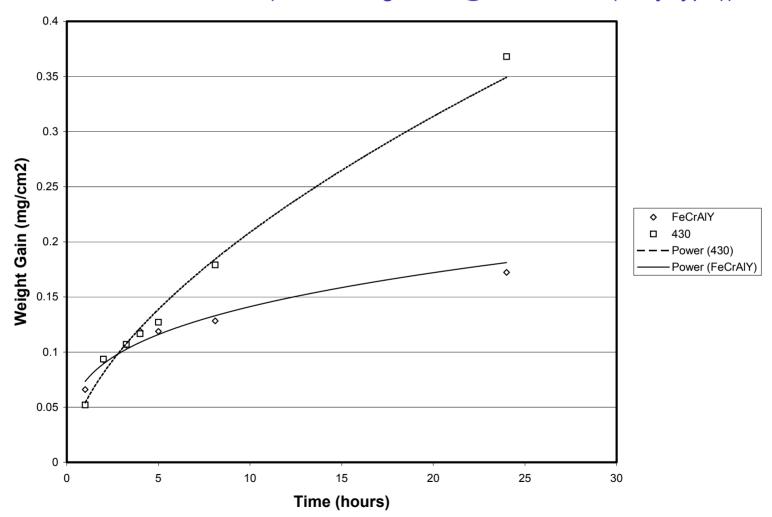
Area Specific Resistance (ASR) Measurement as f(temperature)


 AC Impedance Measurements (equivalent circuit)

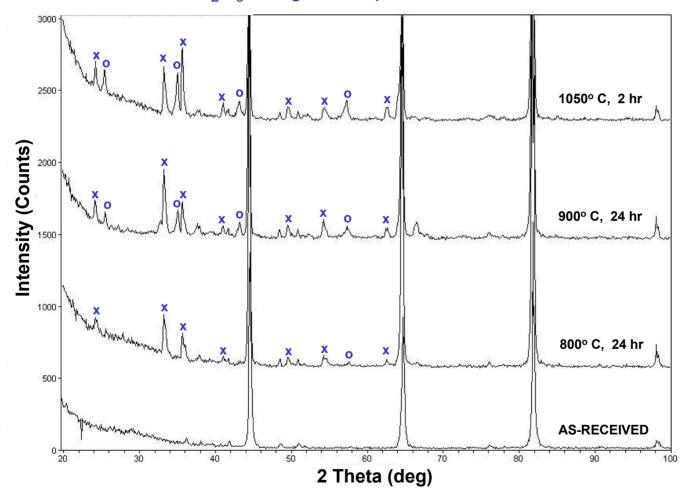
Experimental Approach


- Interdiffusion Couple Experiment
 - Thick, monolithic interconnect/electrode materials under load
 - Pre-load compensated at temperature with thermal expansion differences
 - Sample size: ~1 cm x 1cm

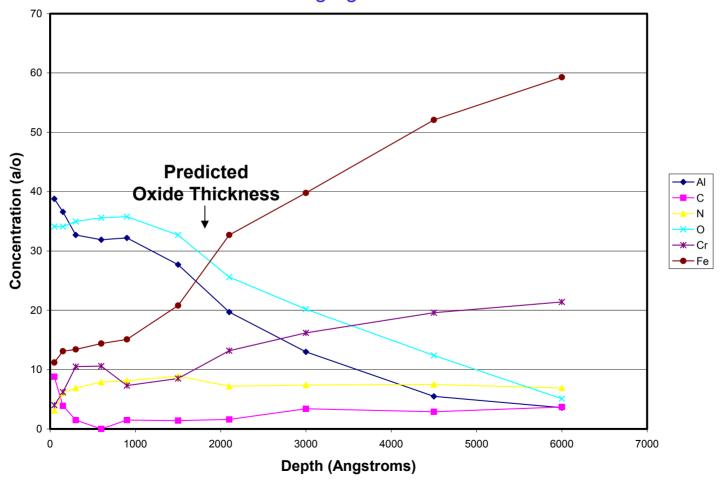
Verify stability of electrode/interconnect interface at temperature



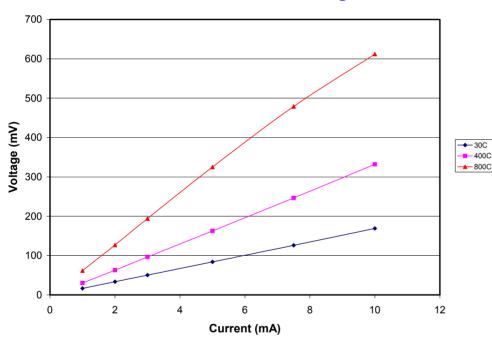
• Thermal Oxide Kinetics (Parabolic Growth, $T = k_p (t)^{1/2}$, as f(temperature))



Thermal Oxide Kinetics (Parabolic growth @900° C, as f(alloy type))

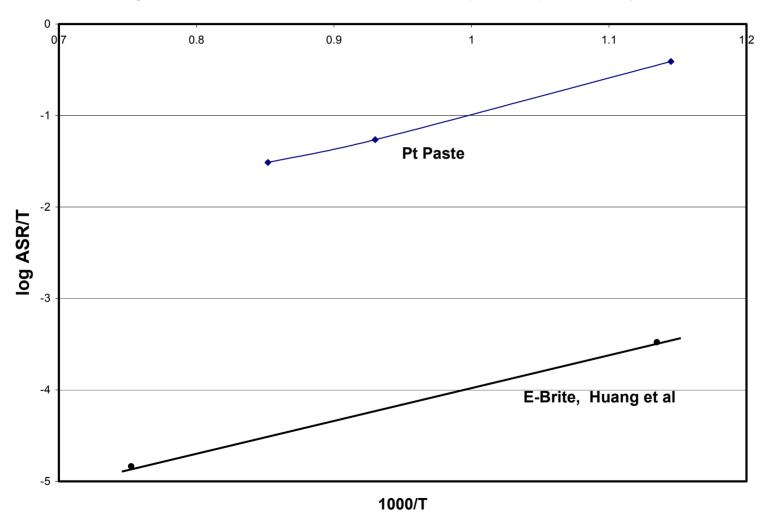

- X-ray Diffraction (Structure)
 - Formation of mixed oxides, (Cr,Fe)₂O₃ and Al₂O₃
 - Increase of Al₂O₃ at higher temperatures

X (Cr,Fe)₂O₃O Al₂O₃

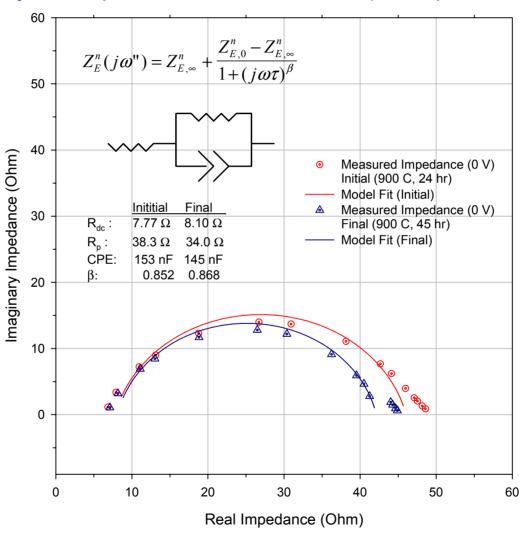


- AES Surface Analysis (900 °C in dry air, 2 hr.)
 - Mixed oxide with alumina segregated to surface

- ASR Measurements (in progress)
 - Verification of Ohms Law
 - Verification of contacting method

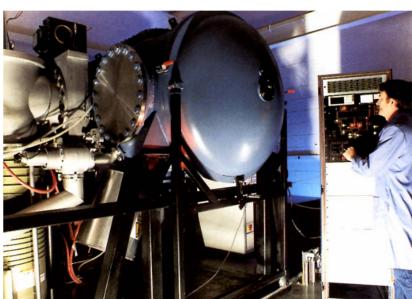

Ion Implantation (in progress)

	<u>Nb</u>	<u>Ti</u>	<u>Y</u>
Dose , lons/cm ²	1E16	1E16	1E16
Nominal Depth , μm	0.12	0.12	0.12
Energy, KeV	280	150	270


- Fabrication of cathode Material (UTA)
 - La0.8Sr0.2FeO3 and LSC (in progress) pellete supplied by W.J.
 Wan, J.B. Goodenough, Materials Science and Engineering, UTA

Preliminary ASR of FeCrAlY thermal oxide (950° C) with Pt paste

Preliminary AC Impedance Measurements (un-doped thermal oxide)



Applicability to SOFC Commercialization

 As part of the cost share commitment, SwRI is developing a scaleable implantation process in-line with other large-scale vacuum processing

Metal Ion Source (Ar+Cr plasma)

Large-scale PIII Chamber

 Based on success of Phase I, SwRI would team with commercial partner to develop large-scale implantation capability and demonstrate applicability of process to SOFC stacks

Activities for Next 3-6 months

- Complete Ion Implantation/ Validate concentration/depth
- ASR measurements as a f(temperature) for thermally grown/ion implanted oxides
- Long term, 1,000 hour, testing in simulated fuel cell environment
- Conduct interdiffusion couple experiments with xxx cathode materials